9 research outputs found

    NEW APPROCHES TO THE REMOVAL OF PROTEIN-BOUND TOXINS FROM BLOOD PLASM OF UREMIC PATIENTS

    Get PDF
    The article is elucidates the theoretical aspects of the effective method development for the removal of protein-bound uremic toxins. It is shown that the methods of flow and differential scanning microcalorimetry are effective for the evaluation of the degree of ligand loading of human serum albumin with protein-bound uremic toxins. Acknowledgment - This work supported by INTAS-04-082-7065 grant program

    Sorption Detoxification as an Addition to Conventional Therapy of Acute Radiation Sickness and Iatrogenic Leukopenia

    Get PDF
    Leukopenia is an essential part of the clinical course of acute radiation sickness and is a side effect of anti-cancer treatment. In both situations, the main factors which determine the survival are the degree of bone marrow suppression and gastrointestinal tract damage due to the presence of a large pool of fast-dividing cells. Leuko- and neutropenia are main limiting factors which may contribute to chemotherapy failure. Hematopoietic cytokines the part of conventional therapy in this field, but their effects require boosting. That is why the use of means and methods of adsorption therapy is considered promising. Sorption therapy creates a basis for sorption detoxification, a doctrine of curative measures directed to the removal of toxic endogenous or exogenous compounds from body fluids. The most widely used types are the purification of blood or its components (hemosorption), oral administration of sorption materials (enterosorption) and application-sorption therapy of wounds and burns. In this chapter, the results of early and recent research and prospects for the use of carbon adsorption therapy for the treatment of acute radiation sickness and cytostatic myelosuppression are discussed

    Thermal effects of carbonated hydroxyapatite modified by glycine and albumin

    Get PDF
    In this work calcium phosphate powders were obtained by precipitation method from simulated solutions of synovial fluid containing glycine and albumin. X-ray diffraction and IR spectroscopy determined that all samples are single-phase and are presented by carbonate containing hydroxyapatite (CHA). The thermograms of solid phases of CHA were obtained and analyzed; five stages of transformation in the temperature range of 25-1000°C were marked. It is shown that in this temperature range dehydration, decarboxylation and thermal degradation of amino acid and protein connected to the surface of solid phase occur. The tendency of temperature lowering of the decomposition of powders synthesized from a medium containing organic substances was determined. Results demonstrate a direct dependence between the concentration of the amino acid in a model solution and its content in the solid phase

    Elimination of Endogenous Toxin, Creatinine from Blood Plasma Depends on Albumin Conformation: Site Specific Uremic Toxicity & Impaired Drug Binding

    Get PDF
    Uremic syndrome results from malfunctioning of various organ systems due to the retention of uremic toxins which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. The aim of this study was to elucidate the mechanisms underlying the renal elimination of uremic toxin creatinine that accumulate in chronic renal failure. Quantitative investigation of the plausible correlations was performed by spectroscopy, calorimetry, molecular docking and accessibility of surface area. Alkalinization of normal plasma from pH 7.0 to 9.0 modifies the distribution of toxin in the body and therefore may affect both the accumulation and the rate of toxin elimination. The ligand loading of HSA with uremic toxin predicts several key side chain interactions of site I that presumably have the potential to impact the specificity and impaired drug binding. These findings provide useful information for elucidating the complicated mechanism of toxin disposition in renal disease state

    Chapter Sorption Detoxification as an Addition to Conventional Therapy of Acute Radiation Sickness and Iatrogenic Leukopenia

    Get PDF
    Leukopenia is an essential part of the clinical course of acute radiation sickness and is a side effect of anti-cancer treatment. In both situations, the main factors which determine the survival are the degree of bone marrow suppression and gastrointestinal tract damage due to the presence of a large pool of fast-dividing cells. Leuko- and neutropenia are main limiting factors which may contribute to chemotherapy failure. Hematopoietic cytokines the part of conventional therapy in this field, but their effects require boosting. That is why the use of means and methods of adsorption therapy is considered promising. Sorption therapy creates a basis for sorption detoxification, a doctrine of curative measures directed to the removal of toxic endogenous or exogenous compounds from body fluids. The most widely used types are the purification of blood or its components (hemosorption), oral administration of sorption materials (enterosorption) and application-sorption therapy of wounds and burns. In this chapter, the results of early and recent research and prospects for the use of carbon adsorption therapy for the treatment of acute radiation sickness and cytostatic myelosuppression are discussed
    corecore